

THE FLUIDITY OLYMPICS

Jinfeng Liao

Lawrence Berkeley National Laboratory

- Brief introduction: length scales in fluids
- An intrinsic fluidity measure: winner?
- Supercritical liquids: supercritical QGP?
- Applicability of hydro for heavy ion collisions: expectation for LHC
- Summary

JL & Koch, Phys.Rev.C, 81, 014902(2010),arXiv:0909.3105[hep-ph]

IN SEARCH OF PERFECT FLUIDS

In search of perfect fluids

A publication of the American Institute of Physics

players

.....

BERKELEY

SCALES !!!

Berkeley Summer School, Jun. 2010

LENGTH SCALES IN FLUIDS

WHAT HYDRO EQNS. SAY

Berkeley Summer School, Jun. 2010

Dated back to Gyulassy&Danielewicz 1984

$$\frac{\eta}{w \approx Ts} \times \frac{1}{\tau} = \frac{\eta}{s} \times \frac{1}{T\tau} << 1$$

Comment: s comes from w, the inertia

Berkeley Summer School, Jun. 2010

THE ETA/S TRIUMPH

$$\frac{\eta}{s} [AdS BH] \leq \frac{\eta}{s} [sQGP, cold atom] \ll \frac{\eta}{s} [water]$$

Berkeley Summer School, Jun. 2010

FLUID INERTIA: FROM R TO NR

I Fluid inertia in hydro equations:

□ Thermodynamics:

Relativistic

$$w_{\mathbf{R}} = \epsilon + p = I s + \mu_{\mathbf{R}} n,$$
$$w = T s + (\mu_{\mathbf{NR}} + m)n \xrightarrow{T \ll m} mn \equiv \rho$$

.....

$$w \stackrel{T \gg \mu_{\mathbb{R}}}{\rightarrow} Ts$$

□ When entropy density dominates inertia?

□ What is the original KSS conjecture?

 $\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_B} \qquad \text{for all relativistic quantum field theories at finite temperature and zero chemical potential.}$

See also critical evaluation of several variants with great details by Cohen, et al

Ts is NOT everywhere the measure of inertia; need new fluidity measure !

THE ETA/S PITFALL

A counter-example:

from T. Cohen, et al [Phys.Rev.Lett.99,021602(2007); JHEP0802:026,2008]

Berkeley Summer School, Jun. 2010

PROBE THE TRANSPORT SCALE

Probe a fluid with sound wave,

Starting from the **VERY** long wavelength, i.e.: *the long wavelength limit* And, gradually reduce the wavelength...

At some probe scale (wavelength): expect breakdown of hydro \rightarrow That scale is an intrinsic, transport scale of the fluid \rightarrow the scale we want to pinpoint

Berkeley Summer School, Jun. 2010

SOUND ATTENUATION IN VISCOUS FLUID

□ Sound wave probes fluid dissipation like a harmonic oscillator

Berkeley Summer School, Jun. 2010

THE WAVE-LESS-LENGTH

□ When a sound wave ceases to propagate ...

Berkeley Summer School, Jun. 2010

Berkeley Summer School, Jun. 2010

APPLICATION: CRITICAL FLUID

Berkeley Summer School, Jun. 2010

CRITICAL BEHAVIOR

$$\begin{split} \xi \to \infty \\ \eta \sim \xi^{\mathbf{x}_{\eta}} \\ \mathbf{c}_{s} \to \xi^{-\gamma/2 \nu} \\ \left(\frac{\eta}{\rho \, \mathbf{c}_{s}}\right) \middle/ \xi \to \xi^{\mathbf{x}_{\eta} + \gamma/2 \nu - 1} \end{split}$$

Mean field:

 $\mathbf{x}_{\eta} = 0$ $\gamma = 1$ $\gamma = 1 / 2$ $\left(\frac{\eta}{\rho c_{s}}\right) / \xi \to \xi^{0}$ Epsilon expansion: $\mathbf{x}_{\eta} = 0.065$ $\gamma = 1.167$ $\gamma = 0.583$

$$\left(\frac{\eta}{\rho c_{\rm s}}\right) / \xi \to \xi^{0.065}$$

Berkeley Summer School, Jun. 2010

SUPERCRITICAL FLUID

BERKELEY LAB

The best fluidity for a substance is **NOT** around the critical point.
The fluidity gets dramatically **enhanced** in the supercritical region!

Berkeley Summer School, Jun. 2010

ETA: THE QCD MATTER

HRG:

Hadron resonance gas (Prakash, Venugopalan, et al; Demir & Bass; Noronha, Greiner et al; ChPT by Fernandez-Fraile & Nicola;.....)

sQGP:

Strongly-coupled QGP (Molecular Dynamics, by Gelman, Shuryak, Zahed, Liao, Dusling, Cho, et al; gluon trasnport model by Xu, Greiner et al; AdS/CFT by Son, et al)

wQGP:

Weakly-coupled QGP (at high T by Arnold-Moore-Yaffe)

Berkeley Summer School, Jun. 2010

FLUIDITY OLYMPICS

Berkeley Summer School, Jun. 2010

Fluidity Olympics

SQGP AS SUPERCRITICAL QGP?

BERKELEY LAB

rrrr

Berkeley Summer School, Jun. 2010

WHAT IS SO SPECIAL?

- Solid: many more profound peaks (phonons travel far)
- Gas: trivial (particles travel far)
- Liquid: in between

(guess) sLiquid: only ~1 peaks (really particle/phonon all stuck)

Berkeley Summer School, Jun. 2010

Berkeley Summer School, Jun. 2010

GRADIENT EXPANSION IN

Expect ultimate paradise for hydro at LHC?!

Berkeley Summer School, Jun. 2010

Hydro: long wavelength limit ; In heavy ion collisions: not always there Do we know the short wavelength end? For a strongly coupled plasma?

Berkeley Summer School, Jun. 2010

EXPLORING THE SHORT

Berkeley Summer School, Jun. 2010

Fluidity Olympics

.....

EDVELE

SUMMARY

- The important length scale for a fluid that doverns the transport and dissipation: $L_{\eta} \equiv \begin{cases} \frac{\eta}{(w/c^2)c_s}, & \text{R fluid}, \\ \frac{\eta}{(w/c^2)c_s}, & \text{NR fluid}. \end{cases}$
- A new measure of fluidity for comparing fluids from completely different scales
- A good liquid is a good liquid: Leta approaching micro. Scale quite universal → <u>fluidality</u> *F* ~ 0.1 0.5
- Supercritical fluid and supercritical QGP
- Better hydro description at LHC

THANK YOU !